if cosec theta + cot theta = p , then prove that cos theta = p^2 - 1 / p^2 + 1
Answers
Answered by
1
given that cosec A + cot A = p _______(1)
ausing cosec ^ 2A - cot ^ 2A =( cos A + cotA) ( cosA - cot A)
1 = p ( cosec A - cot A)
1/ p = cosec
A - cotA ------(2)
1+ 2
p+ 1/p
p^ 2 + 1/p -------(3)
1- 2
1-2
p- 1/p
p^ 2 - 1/p ---------. (4)
(4) /(3)
p^ 2 - 1/p / P^ 2 +1 /p
here p gets cancelled
p^ 2 - 1/ p^ 2 +1
Hence proved
ausing cosec ^ 2A - cot ^ 2A =( cos A + cotA) ( cosA - cot A)
1 = p ( cosec A - cot A)
1/ p = cosec
A - cotA ------(2)
1+ 2
p+ 1/p
p^ 2 + 1/p -------(3)
1- 2
1-2
p- 1/p
p^ 2 - 1/p ---------. (4)
(4) /(3)
p^ 2 - 1/p / P^ 2 +1 /p
here p gets cancelled
p^ 2 - 1/ p^ 2 +1
Hence proved
Answered by
2
I made it.
Just by using p2-1/P2+1 as lhs
Just by using p2-1/P2+1 as lhs
Attachments:
Anonymous:
If u wish u can mark brainliest
Similar questions