if cosec theta+cot theta=q, show that cosec theta-cot theta=1/q hence find the values of sin theta and sec theta
Answers
Step-by-step explanation:
hope this will help you
Answer:
- sinθ = 2q/(1 + q²)
- secθ = 1/cosθ = (q² + 1)/(q² - 1)
Step-by-step explanation:
GIVEN:-
cosecθ + cotθ = q ------------ ( 1 )
we have to prove
cosecθ - cotθ = 1/q
from ------ ( 1 )
cosecθ + cotθ = q
=> 1/q = 1/(cosecθ + cotθ)
=> 1/q = 1/(cosecθ + cotθ) × (cosecθ - cotθ)/(cosecθ - cotθ)
=> 1/q = (cosecθ - cotθ)/(cosec²θ - cot²θ)
[ cosec²θ - cot²θ = 1 trig. Identity]
=> 1/q = (cosecθ - cotθ)/1
=> 1/q = (cosecθ - cotθ) -------- ( 2 )
we have to find the value of sinθ and secθ
on adding ------( 1 ) & ------ ( 2 )
(cosecθ + cotθ) + (cosecθ - cotθ) = q + 1/q
=> 2cosecθ = (q² + 1)/q
=> 2/sinθ = (q² + 1)/q
=> sinθ = 2q/(1 + q²)
from ------( 1 ) & ------( 2 )
(cosecθ + cotθ) - (cosecθ - cotθ) = q - 1/q
=> 2cotθ = (q² - 1)/q
=> 2cosθ/sinθ = (q² - 1)/q
[putting value of sinθ]
=> 2cosθ = (q² - 1)/q × 2q/(1 + q²)
=> cosθ = (q² - 1)/(q² + 1)
=> secθ = 1/cosθ = (q² + 1)/(q² - 1)
thanks,
#SPJ3