Math, asked by shambodas52, 1 year ago

If cosec theta - cot theta = root 2 - 1 then let us find the value of (cosec theta + cot theta)​

Answers

Answered by MaheswariS
7

Answer:

cosec\theta+cot\theta=\sqrt2+1

Step-by-step explanation:

Formula used:

cosec^2A-cot^2A=1

a^2-b^2=(a+b)(a-b)

cosec\theta-cot\theta=\sqrt2-1

Taking reciprocals

\frac{1}{cosec\theta-cot\theta}=\frac{1}{\sqrt2-1}

Multiply both numerator and denominator by cosec\theta+cot\theta

\frac{cosec\theta+cot\theta}{(cosec\theta-cot\theta)(cosec\theta+cot\theta)}=\frac{1}{\sqrt2-1}

\frac{cosec\theta+cot\theta}{cosec^2\theta-cot^2\theta}=\frac{1}{\sqrt2-1}*\frac{\sqrt2+1}{\sqrt2+1}

\frac{cosec\theta+cot\theta}{1}=\frac{\sqrt2+1}{{\sqrt2}^2-1^2}

\frac{cosec\theta+cot\theta}{1}=\frac{\sqrt{2}+1}{2-1}

\implies\:cosec\theta+cot\theta=\sqrt2+1

Similar questions