Math, asked by Dynamoyash3, 1 year ago

If cosec theta minus cot theta is equal to 1 by 4 then cosec theta + cot theta is equal to

Answers

Answered by Sharad001
45

Question :-

 \sf if \csc \theta -  \cot \theta =  \frac{1}{4}  \: then \: find \: the \\  \sf value \: of \csc \theta +  \cot \theta

Answer :-

 \large \: \boxed{\to \csc \theta +  \cot \theta = 4} \:

Formula used :-

 \sf \: Here \:  we \:  will  \: use \:  trigonometric \:  identity  \\  \leadsto \:  { \csc}^{2}  \theta -  { \cot}^{2}  \theta = 1 \\ \bf and \\  \leadsto \bf  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

Solution :-

Given that

 \to \:  \csc \theta -  \cot \theta =  \frac{1}{4}  \\  \bf \: we \: know \: that \\  \\  \to \:  { \csc}^{2}  \theta -  { \cot}^{2}  \theta = 1 \\  \\  \because \bf  {x}^{2}  -  { y }^{2} =  (x + y)(x - y)  \:  \\  \therefore \\  \to \sf ( \csc \theta +  \cot \theta)( \csc \theta -  \cot \theta) = 1 \\  \because \:  \csc  \theta -  \cot \theta =  \frac{1}{4}  \\ \therefore \\  \to \sf ( \csc \theta +  \cot \theta) \times  \frac{1}{4}  = 1 \\  \\   \boxed{\to \csc \theta +  \cot \theta = 4}

Similar questions