Math, asked by samfisher561, 1 year ago

If cosec theta minus sin theta is equals to M cube and secant theta minus cos theta = 2 and cube then prove that and raise to power 4 and square + sin square x by 4 is equals to 1

Answers

Answered by tanmoyvestige
7

Answer:

HERE IS YOUR ANSWER

                                                                                                                             

Consider cosec theta - sin theta = a³

⇒ sin theta - sin theta = a³

⇒ 1 - sin² theta/sin theta = a³

cos² theta/ sin theta = a³ → (1)

⇒ (cos² theta/sin theta)²/³ = (a³)²/³

⇒ cos⁴/³ theta/sin²/³ theta = a² → (2)

Now consider, sec theta - cos theta = b³

⇒ 1/cos theta - cos theta = b³

⇒ 1 - cos²theta/cos theta = b³

⇒ sin² theta/cos theta = b³ → (3)

⇒ (sin² theta/cos theta)²/³ = (b³)²/³

⇒ sin⁴/³ theta/cos²/³ theta = b² → (4)

Multiply (2) and (4), we get

(cos⁴/³ theta/sin²/³ theta)× (sin⁴/³ theta/cos²/³ theta) = a²b² → (5)

a² + b² =(cos⁴/³ theta/sin²/³ theta) + (sin⁴/³ theta/cos²/³ theta)

(cos² theta + sin² theta)/(sin²/³ theta cos²/³ theta)

= 1/sin²/³ theta cos²/³ theta

Consider, a²b²(a²+b²) = (sin²/³ theta cos²/³ theta) × 1/sin²/³ theta cos²/³ theta

= 1

                                                                                                                             

Hence proved.

Answered by Anonymous
13

CORRECT QUESTION :

If cosec theta - sin theta=m³ and sec theta - cos theta=n³, then prove that (m^2n)^2/3 + (mn^2)^2/3 = 1

cosec Ф - sin Ф = m³ .

⇒ 1/sin Ф - sin Ф = m³

⇒ ( 1 - sin²Ф )/sin Ф = m³

⇒ cos²Ф/sin Ф = m³

⇒ cot Ф  cos Ф = m³

⇒ cos²Ф / sin Ф = m³ .........( 1 )

sec Ф - cos Ф = n³

⇒ 1/cosФ - cosФ = n³

⇒ ( 1 - cos²Ф )/cosФ = n³

⇒ sin²Ф/cosФ = n³ ...........( 2 )

We have to prove that :

(m²n)^2/3 + (mn²)^2/3 = 1

⇒ ( cos⁴Ф/sin²Ф . sin²Ф/cosФ )^(2/3) + ( sin⁴Ф/cos²Ф . cos²Ф/sinФ)^(2/3)

= cos²Ф + sin²Ф

= 1

Hence proved !

Similar questions
Math, 1 year ago