If cosec theta minus sin theta is equals to M cube and secant theta minus cos theta = 2 and cube then prove that and raise to power 4 and square + sin square x by 4 is equals to 1
Answers
Answered by
10
CORRECT QUESTION :
If cosec theta - sin theta=m³ and sec theta - cos theta=n³, then prove that (m^2n)^2/3 + (mn^2)^2/3 = 1
cosec Ф - sin Ф = m³ .
⇒ 1/sin Ф - sin Ф = m³
⇒ ( 1 - sin²Ф )/sin Ф = m³
⇒ cos²Ф/sin Ф = m³
⇒ cot Ф cos Ф = m³
⇒ cos²Ф / sin Ф = m³ .........( 1 )
sec Ф - cos Ф = n³
⇒ 1/cosФ - cosФ = n³
⇒ ( 1 - cos²Ф )/cosФ = n³
⇒ sin²Ф/cosФ = n³ ...........( 2 )
We have to prove that :
(m²n)^2/3 + (mn²)^2/3 = 1
⇒ ( cos⁴Ф/sin²Ф . sin²Ф/cosФ )^(2/3) + ( sin⁴Ф/cos²Ф . cos²Ф/sinФ)^(2/3)
= cos²Ф + sin²Ф
= 1
Hence proved !
manasiriya2003:
Thanx
Answered by
3
Answer:
Answer:ANSWER IS GIVEN IN ATTACHMENT BELOW
Attachments:
Similar questions