Math, asked by smaiti, 17 days ago

if cosec theta=root 5 find the valu of cot theta-cos theta.​

Answers

Answered by EmperorSoul
5

Given that:

  • If Cosec Theta = Root 5 .Find The Value Of Cot Theta- Cos Theta

To Find:

  • Value Of Cot Theta-Cos Theta

We know that:

  • Cosec Theta = Hypotenuse/Opposite Side

Finding The Value Of Cot Theta- Cos Theta:-

↠Cosec Theta = Hypotenuse/Opposite Side

↠√5/1

↠Let: Hypotenuse = √5

↠Opposite Side = 1

↠Adjacent Side = √[(√5)² - 1²]

↠√[4] = 2

Important:-

⇒Cos theta = Adjacent side/Hypotenuse

⇒ Cot theta = Adjacent side/Opposite Side

⇒Cot theta - Cos Theta

➙ 2/1 - 2/√5

➙ (2√5 - 2)/√5

(10 - 2√5)/5

Hence,

Value Of Cot Theta-Cos Theta Is (10 - 2√5)/5

Answered by juwairiyahimran18
1

Given ,

cosec \: θ =  \sqrt{5}

Find ,

value \: of \: cot \: θ \:  - cos \: θ

we know that ,

cosec \: θ =  \frac{hypotenuse}{perpendicular}

Solution ,

cosec \: θ =  \frac{ \sqrt{5} }{1}

Here , H = √5 and P = 1

now ,

 {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  { \sqrt{5} }^{2}  =  {1}^{2}  +  {b}^{2}  \\ 5 = 1 +  {b}^{2}  \\  {b}^{2}  = 4 \\ b = 2.

cot \: θ =  \frac{b}{p}  =  \frac{2}{1}  \\  \\ cos \: θ =  \frac{ 2 }{ \sqrt{5} }  \\  \\ cot \: θ - cos \: θ =  \frac{2}{1}  -  \frac{2}{ \sqrt{5} }   \\  \\ cot \: θ - cos \: θ = 2(1 -  \frac{1}{ \sqrt{5} }) .

Similar questions