Math, asked by nishi546697, 1 year ago

if cosec theta - sin theta= a^3, sec theta-cos theta= b^3, then the value of a^2b^2(a^2+b^2) is. (a)2. ( b)3. (c)4. (d)1​


pranjal4070: ans is 1
nishi546697: thanks

Answers

Answered by sivaprasath
9

(Instead of θ, I use A)

Answer:

Option (d) 1

Step-by-step explanation:

Given :

cosec A - sin A = a³,  ...(i)

sec A - cos A = b³,   ...(ii)

Then, To find the value of,

a²b²(a² + b²),.

_

Solution :

We know that,

cosec A = \frac{1}{sin A} ...(iii)

sec A = \frac{1}{cos A}    ...(iv)

sin^2 A + cos^2A = 1      ...(v)

Hence,

(i) ⇒ cosec A - sin A = a^3

\frac{1}{sin A}- sin A = a^3,

\frac{1-sin^2A}{sin A} = a^3,  from (v)

\frac{cos^2A}{sin A} = a^3,

(\frac{cos^2A}{sinA})^{\frac{2}{3}} = a^{3(\frac{2}{3})}

\sqrt[3]{(\frac{cos^2A}{sinA})^2} = a^2

\sqrt[3]{\frac{cos^4A}{sin^2A}}= a^2...(vi)

_

(ii) ⇒ sec A - cos A = b^3

\frac{1}{cos A}  - cos A = b^3,

\frac{1-cos^2A}{cos A} = b^3,  from (v)

(\frac{sin^2A}{cosA})^{\frac{2}{3} } = b^{3(\frac{2}{3})}

\sqrt[3]{(\frac{sin^2A}{cosA})^2} = b^2

\sqrt[3]{\frac{sin^4A}{cos^2A}}= b^2...(vi)

_

Hence,

a^2b^2(a^2 + b^2)

(\sqrt[3]{\frac{cos^4A}{sin^2A}})(\sqrt[3]{\frac{sin^4A}{cos^2A}})(\sqrt[3]{\frac{cos^4A}{sin^2A}}+\sqrt[3]{\frac{sin^4A}{cos^2A}})

\sqrt[3]{\frac{cos^4Asin^4A}{sin^2Acos^2A}}(\frac{\sqrt[3]{cos^4A} }{\sqrt[3]{sin^2A}} +\frac{\sqrt[3]{sin^4A} }{\sqrt[3]{cos^2A} } )

(\sqrt[3]{sin^2Acos^2A})(\frac{(\sqrt[3]{cos^4A})(\sqrt[3]{cos^2A})+(\sqrt[3]{sin^4A})(\sqrt[3]{sin^2A}}{(\sqrt[3]{sin^2A})(\sqrt[3]{cos^2A})}

(\sqrt[3]{sin^2Acos^2A})(\frac{(\sqrt[3]{cos^6A})+(\sqrt[3]{sin^6A})}{\sqrt[3]{sin^2Acos^2A}}

\sqrt[3]{(cos^2A)^3} + \sqrt[3]{(sin^2A)^3}= cos^2A + sin^2A = 1

Similar questions