Math, asked by amanh787, 9 months ago

If cosec theta / sin theta - x/ tan ² theta= 1 find the value of x easy

Answers

Answered by Anonymous
2

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{\boxed { \huge  \mathcal\red{ solution}}}}

•GiVeN

\bf\red{\frac{cosec\theta}{sin\theta} -\frac{x}{tan{}^{2}\theta}=1}

TO FinD

x=?

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\star {\underline{Solution}}

\implies\bf\red{\frac{cosec\theta}{sin\theta} -\frac{x}{tan{}^{2}\theta=1}}\\ \implies \bf\frac{1}{sin{}^{2}\theta} -\frac{x}{\frac{sin{}^{2}\theta}{cos{}^{2}\theta}}=1

\implies\bf\frac{1}{sin{}^{2}\theta} -\frac{x\:cos{}^{2}\theta}{sin{}^{2}\theta}=1

\implies \bf \frac{1-xcos{}^{2}\theta}{sin{}^{2}\theta}=1\\ \implies\bf 1-xcos{}^{2}\theta=\bf sin{}^{2}\theta\\ \implies \bf 1-sin{}^{2}\theta=\bf x\:cos{}^{2}\theta\\  \implies\bf cos{}^{2}\theta=x\:cos{}^{2}\theta\\ \implies x=\frac{\cancel{cos{}^{2}\theta}}{\cancel{cos{}^{2}\theta}}\\ \implies\bf \boxed{\bf \red{x=1}}\:\:(answer)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

FormulA UseD

\bf\rightarrow 1-sin{}^{2}\theta=cos{}^{2}\theta\\  \bf\rightarrow tan\theta=\frac{sin\theta}{cos\theta}\\ \bf\rightarrow cosec\theta=\frac{1}{sin{}^{2}\theta}\\ \bf\rightarrow sec\theta=\frac{1}{cos\theta}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

\mathcal{ \#\mathcal{answer with quality  }\:  \:  \&  \:  \: \#BAL }

Similar questions