Math, asked by suni7410, 11 months ago

if cosec thita =2 and cot thita = √3P. where thita is an acute angle, then wht is the value of P

Answers

Answered by rishu6845
8

Answer:

±1

Step-by-step explanation:

Given---> Cosecθ=2 ,Cotθ=(√3)p

----------

To find--->Value of p i.e. p=?

------------

Solution----> We know that

------------ 1+Cot²θ=Cosec²θ

Now Cosecθ=2 ,Cotθ=(√3)p

Cosec²θ - Cot²θ =(2)² - (√3 p)²

=> 1 = 4 - 3p²

=> 3p² =4-1

=> 3p²= 3

=> p²=3/3

=> p²=1

=> p=±1

Additional information---->

------------------------------------

1)Sin²θ+Cos²θ=1

2)1+tan²θ=Sec²θ

3)tan²θ=Sec²θ-1

4)1=Sec²θ-tan²θ

5)1-Cos²θ=Sin²θ

6)1-Sin²θ=Cos²θ

Answered by anu24239
14

\huge\mathfrak\red{Answer}

 \csc \alpha  = 2..........(1) \\  \cot \alpha  = p \sqrt{3} ......(2) \\  \\ take \: square \: on \: (2) \:  \\  \\  {cot}^{2}  \alpha  = 3 {p}^{2}  \\  \\ we \: know \: that \: 1 +  {cot}^{2}  \alpha  =  {csc}^{2}  \alpha  \\  \\  { \csc}^{2}  \alpha  - 1 = 3 {p}^{2}  \\ from \: (1) \: we \: know \: that \: csc \alpha  = 2 \\  \\  {(2)}^{2}  -\: 1 = 3 {p}^{2}  \\ 3 = 3 {p}^{2}  \\  {p}^{2}  = 1 \\ p =  - 1 \: or \:  + 1 \\  \\ as \: you \: mentioned \: that \:  \alpha \:   is \: an \: acute  \\ \: angle \: and \: we \: know \: that \: cot \alpha  \: is \\ positive \: is \:  \alpha  < 90 \: so \:  \\  \\ p =  + 1

Similar questions