If cosec (tita) - sin(tita)= x^3 and sec(tita)- cosec(tita) = y^3. then prove that x^2× y^2 (x^2+y^2)= 1
Answers
Answered by
44
correct Question:- if
then prove that
Solution:-
Similarly,
Substituting the values,
Answered by
9
Answer:
= x^{3}}⟹
sinθ
1
−sinθ=x
3
cos^{2}sin theta = x^{3}}⟹
sinθ
cos
2
θ
=x
3
\large\rm { \leadsto x = ( \frac { \cos^{2} \theta}{\sin \theta} ) ^{\frac{1}{3}}}⇝x=(
sinθ
cos
2
θ
)
3
1
Similarly, \large\rm { \leadsto y = ( \frac { \sin^{2} \theta}{\cos \theta} ) ^{\frac{1}{3}}}⇝y=(
cosθ
sin
2
θ
)
3
1
\large\rm { \therefore x^{2} y^{2} ( x^{2} + b^{2} ) = x^{4} y^{2} + x^{2} y^{4}}∴x
2
y
2
(x
2
+b
2
)=x
4
y
2
+x
2
y
4
Substituting the values,
\large\rm { \cos^{2} \theta + \sin^{2} \theta = 1}cos
2
θ+sin
2
θ=1
\large\boxed{\rm { \therefore x^{2} y^{2} ( x^{2} + y^{2} ) = 1}}
∴x
2
y
2
(x
2
+y
2
)=1
Similar questions