Math, asked by saurabhshakya043, 11 months ago

if cosec x + cot x = a then cos x =?​

Answers

Answered by qureshisohil63
0

Answer:

1/sin(x)+cos(x)/sin(x)=a

1+cos(x)=asin(x)

cos(x)=asin(x)-1

Answered by Anonymous
8

GIVEN

  • Cosec x + cot x = a

Explanation:

 \\ \colon\implies{\tt{ cosec \ x + cot \ x = a }} \\ \\ \\ \colon\implies{\tt{ cosec \ x + cot \ x = \dfrac{1}{cosec \ x - cot \ x } = a }} \\ \\ \\ \colon\implies{\tt{ cosec \ x - cot \ x = \dfrac{1}{a} }} \\ \\ \\ \colon\implies{\tt{ 2cosec \ x = a + \dfrac{1}{a} = \dfrac{a+1}{a} }} \\ \\ \\ \colon\implies{\tt{ cosec \ x = \dfrac{a^2 + 1}{2a} }} \\ \\ \\ \colon\implies{\tt{ sin \ x = \dfrac{2a}{a^2+1} }} \\ \\ \\ \colon\implies{\tt{ cos \ x = \sqrt{ 1 - sin^2x } }} \\ \\ \\ \colon\implies{\tt{ \sqrt{ 1 - \left( \dfrac{2a}{a^2-1} \right)^2 } }} \\ \\ \\ \colon\implies{\tt{ \sqrt{ 1- \dfrac{4a^2}{(a^2+1)^2 } } }} \\ \\ \\ \colon\implies{\tt{ \sqrt{ \dfrac{(a^2+1)^2 - 4a^2}{(a^2+1)^2 } } }} \\ \\ \\ \colon\implies{\tt{ \sqrt{ \dfrac{(a^2-1)^2}{a^2+1)^2} } }} \\ \\ \\ \colon\implies{\boxed{\tt\pink{ \dfrac{a^2-1}{a^2 + 1 } }}} \\

Hence,

  • The Value of cos x is (a²-1)/(+1) .

More to Know

  • sin  \theta = 1/cosec \theta
  • tan  \theta = 1/cot \theta
  • cot  \theta = cos  \theta /sin  \theta
  • cos  \theta = 1/sec  \theta
  • tan  \theta = sin \theta /cos  \theta
Similar questions