Math, asked by cupcake01, 6 months ago

if cosec2θ (1 + cos θ ) (1 – cos θ) = k, then find the value of k.​

Answers

Answered by MagicalBeast
2

Given :

cosec2θ (1 + cos θ ) (1 – cos θ) = k

To find : k

Identity used :

  • (a-b)(a+b) = (a² - b²)

  • 1 - cos²θ = sin²θ

  • cosecθ = 1 ÷ sinθ

  • sin2θ = 2× cosθ × sinθ

  • sinθ ÷ cosθ = tanθ

Solution :

\sf \implies  \csc(2 \theta)  \times(1 \:  +  \:  \cos(\theta) ) \times  (1 -   \cos(\theta) )  =  \: k\\  \\ \sf \implies k \:  =  \csc(2 \theta) \times  ( {1}^{2}  -  { \cos( \theta) }^{2} ) \\  \\ \sf \implies  \: k \:  =  \csc(2 \theta)  \times(1 -  { \cos( \theta) }^{2} ) \\  \\ \sf \implies   \: k \:  =  \dfrac{1}{ \sin(2 \theta) }  \times  { \sin( \theta) }^{2}  \\  \\  \sf \implies \:  \: k \:  =  \dfrac{1}{2 \times  \cos( \theta)  \times  \sin( \theta) }  \times  { \sin( \theta) }^{2}  \\  \\  \sf \implies \:   \: k \:  = \dfrac{ \sin( \theta) }{2 \times  \cos( \theta) }  \times  \dfrac{  \sin( \theta)  }{ \sin( \theta) }  \\  \\  \sf \implies \: \: k \:  =  \dfrac{ \sin( \theta) }{  \cos( \theta) } \times  \dfrac{1}{2}  \\  \\  \sf \implies \: \: k \:  =   \dfrac{1}{2}  \tan( \theta)

ANSWER :

k = (1/2) × tanθ

Similar questions