if cosecA=2, find the value of 1/tanA+sinA/1+cosA
Answers
Answered by
6
1/tanA+sinA/1+cosA
= cosA/sinA+sinA/1+cosA
= {cosA(1+cosA)+sin^2A}/{sinA(1+cosA)}
= (cosA+cos^2A+sin^2A)/{sinA(1+cosA)}
by putting sin^2A+cos^2A=1
= (1+cosA)/{sinA(1+cosA)}
= 1/sinA
= cosecA=2 which is given ...........
If it is useful plzz mark as brainliest !!
Thankyou ☺☺
= cosA/sinA+sinA/1+cosA
= {cosA(1+cosA)+sin^2A}/{sinA(1+cosA)}
= (cosA+cos^2A+sin^2A)/{sinA(1+cosA)}
by putting sin^2A+cos^2A=1
= (1+cosA)/{sinA(1+cosA)}
= 1/sinA
= cosecA=2 which is given ...........
If it is useful plzz mark as brainliest !!
Thankyou ☺☺
Similar questions