If cosecA=2 find the value of cotA+sinA/1+cosA
Answers
Answered by
2
sol:
CosecA = 2
Sin A = 1/2
cos²A + sin²A = 1
cos²A + (1/2)² = 1
cos²A + 1/4 = 1
1 - 1/4 = cos²A
cos²A = 3/4
cosA = √(3)/2
TanA = sinA/CosA = 1/2 × 2/√(3)
TanA = 1/√(3)
CotA = √(3)
Now,
cotA+sinA/1+cosA
= √(3) + 1/2 / 1 + √(3)/2
= 2√(3) + 1/2 / 2 + √(3)/ 2
= 2√(3) + 1/2 × 2/2 + √(3)
= [2√(3) + 1] × [2 + √(3)]
= 2[2√(3) + 1] + √(3)[2√(3) + 1]
= 4√(3) + 2 + (2×3) + √(3)
= 5√(3) + 2 + 6
= 5√(3) + 8 is the value.
Similar questions