if cosecA=2 then find the value of cotA+sinA/1+cosA
Answers
Answered by
8
i hope my answer is right.
Attachments:
Answered by
4
Given- CosecA=2
To find- (Cot A)+ {SinA/1+CosA}
Solution-
CosecA= Hypotenuse/Opposite= 2x/x ⇒1
CosecA=1/SinA
2=1/SinA
Hence, SinA=1/2 ⇒ 2
Using Pythagoras's Theorem Of Triangles
a² + b²= c²
Therefore,
x² + (BA)²= (2x)²
x²+BA²= 4x²
BA²= 3x²
BA=√3 x
Now,
Cot A= Adjacent/Opposite= √3 x/x = √3 ⇒3
Cos A= Adjacent/Hypotenuse= √3 x/2x = √3/2 ⇒ 4
Therefore, According to the Question, we have to find,
(Cot A)+ {SinA/1+CosA}
Using the values of 2,3,4
⇒ √3 + [1/2 ÷ (1 + √3/2)]
⇒ √3 + [1/2 ÷ ( 2+ √3/2)]
⇒ √3 + [1/2 × 2/2+√3]
⇒ √3 + 1/2+√3
Taking L.C.M.
⇒(2+√3)(√3)/ 2+√3
⇒ 2√3+3/2+√3 ⇒ ANSWER
Similar questions