If cosecA=2 then obtain the value of cotA+sinA/1+cosA
Answers
Answered by
112
Given :
CosecA = 2
We need to find the value of cotA+sinA/1+cosA
Solution :
Sin A = 1/2————(i) {sin A= 1/Cosec A}
By trigonometric identity we know that
cos²A + sin²A = 1———————(ii)
Substituting the value of Sin A from equation (i) in equation (ii)
cos²A + (1/2)² = 1
cos²A + 1/4 = 1
1 – 1/4 = cos²A
cos²A = 3/4
cosA = √(3)/2———–(iii)
We know that,
TanA = sinA/CosA ——–(iv)
Substituting (i) and (iii) in (iv) we get,
So, Tan A = 1/2 × 2/√(3)
TanA = 1/√(3)
CotA = √(3) (cot A = 1/ Tan A}——-(v)
To find :
cotA+sinA/1+cosA
substitute (i) (iii) and (v) in the above equation we get,
= √(3) + 1/2 / 1 + √(3)/2
= 2√(3) + 1/2 / 2 + √(3)/ 2
= 2√(3) + 1/2 × 2/2 + √(3)
= [2√(3) + 1] × [2 + √(3)]
= 2[2√(3) + 1] + √(3)[2√(3) + 1]
= 4√(3) + 2 + (2×3) + √(3)
= 5√(3) + 2 + 6
= 5√(3) + 8
_______________________
Answered by
0
Answer:
5rootthree plus eight bro
Similar questions