If cosecA=2m and cot A=2/m,then 2(m²-1/m²)=?
Answers
Answer:
It is given that cosec{\theta}+cot{\theta}=mcosecθ+cotθ=m , then
\frac{1}{sin{\theta}}+\frac{cos{\theta}}{sin{\theta}}=m
sinθ1 + sinθcosθ =m
\frac{1+cos{\theta}}{sin{\theta}}=m
sinθ
1+cosθ =m
(\frac{1+cos{\theta}}{sin{\theta}})^2=m^2( sinθ
1+cosθ ) 2 =m2
m^2=\frac{1+cos^2{\theta}+2cos{\theta}}{sin^2{\theta}}m
2 =sin 2θ
1+cos 2θ+2cosθ
Now, \frac{m^2-1}{m^2+1}=\frac{1+cos^2{\theta}+2cos{\theta}-sin^2{\theta}}{1+cos^2{\theta}+2cos{\theta}+sin^2{\theta}}
m 2 +1
m 2 −1= 1+cos 2
θ+2cosθ+sin
2 θ1+cos 2 θ+2cosθ−sin2θ
\frac{m^2-1}{m^2+1}=\frac{2cos^2{\theta}+2cos{\theta}}{2+2cos{\theta}}
m 2+1m 2−1=
2+2cosθ
2cos 2 θ+2cosθ
\frac{m^2-1}{m^2+1}=cos{\theta}
m 2+1m 2−1 =cosθ
Hence proved.
Answer:
Let, cosecA+cotA=m
Then
m2−1m2+1
=cosec2A+cot2A+2cosecA.cotA−1cosec2A+cot2A+2cosecA.cotA+1
=2cot2A+2cosecA.cotA2cosec2A+2cosecA.cotA [Since cosec2A−1=cot2A and 1+cot2A=cosec2A]
=cotAcosecA=secA.........(1).
Now
m2+1m2−1=cosA [Using (1)]
Step-by-step explanation:
HOPE MY ANSWERS HELPS U IF U HAD PLZZZ BRAINLIST ME AND FOLLOW ME