if cosecA - cotA = 1/4, then find the value of cosecA + cotA.
Answers
Answered by
26
Given that cosec A - cot A = 1/4.
We know that cosec^2 A - cot^2 A = 1
We know that a^2 - b^2 = (a - b)(a + b)
(cosecA - cotA)(cosecA + cotA) = 1
(1/4)(cosecA+cotA) = 1
cosecA + cotA = 4.
Hope this helps!
We know that cosec^2 A - cot^2 A = 1
We know that a^2 - b^2 = (a - b)(a + b)
(cosecA - cotA)(cosecA + cotA) = 1
(1/4)(cosecA+cotA) = 1
cosecA + cotA = 4.
Hope this helps!
Answered by
5
Answer:
The answer is 4.
Step-by-step explanation:
Since, we know the trigonometric identity,
cosec² x - cot² x = 1
Similarly,
cosec² A - cot² A = 1
⇒ ( cosec A + cot A ) (cosec A - cot A) = 1 ( Since, a² - b² = (a+b)(a-b) )
We have given,
,
Similar questions
English,
8 months ago
Chemistry,
8 months ago
Math,
8 months ago
CBSE BOARD XII,
1 year ago
Social Sciences,
1 year ago