Math, asked by tayebasuha, 1 month ago

if cosecA-cotA=1/x, then prove that cosA=x^2-1/x^2+1​

Answers

Answered by Vivaanmittal022
1

Step-by-step explanation:

We know that cosec²A-cot²A=1

So (cosec-cot)(cosec+cot)=1. (a+b)(a-b)=a²-b²

1/x×(cosec+cot)=1

cosec+cot=x

Adding Value of cosec-cot and cosec+cot

2cosec=x²+1/x

sin=2x/x²+1

We also know that

sin²+cos²=1

So cos²=1-4x2/(x²+1)²

cos²=(x²+1)²-4x²/(x²+1)²

cos²=x⁴+1+2x²-4x²/(x²+1)²

cos²=x⁴-2x²+1/(x²+1)²

cos²=(x²-1)²/(x²+1)²

cos=x²-1/x²+1

Hence proved

Please mark as brainliest if answer was helpful

Answered by MissSolitary
13

 :  \longrightarrow{ \underline{{ \huge{ \mathfrak{A}}} \mathfrak{nswer :-}}}

------------------

Given :

  \mathrm{ \: cosecA \:  - cot A\:  =  \frac{1}{x}  \:  \:  \: ...(i)}

To prove :

 \mathrm{cosA =  \frac{ {x}^{2} - 1 }{ {x}^{2} + 1 } } \\

---------------

We know that,

 \longrightarrow{ \mathrm{cosec²A - cot²A = 1}}

since,

a² - b² = (a+b) (a-b)

 { \mathrm{  \longrightarrow\: (cosecA + cotA) \: (cosecA - cotA) = 1}}

 \mathrm{ \longrightarrow{ \: (cosecA + cotA) \: ( \dfrac{1}{x}) = 1 }}

 \mathrm{ \longrightarrow{ \:cosecA + cotA = x \:  \:  \: ...(ii) }}

--------------

On adding eq. (i) and (ii),

  \mathrm{ \longrightarrow{ \:cosec A -  \cancel{cotA}+ cosecA +  \cancel{cotA} =  \frac{1}{x} + x }}

 \mathrm{ \longrightarrow{ \:2 \: cosec A =  \dfrac{ {x}^{2} + 1 }{x} }}

 \mathrm{ \longrightarrow{ \: cosecA =  \dfrac{ {x}^{2} + 1 }{2x} }}

We know that,

cosecA = 1/sinA

 \mathrm{ \longrightarrow{ \: \dfrac{1}{sinA}  =  \dfrac{ {x}^{2}  + 1}{2x}  }}

Now, cross multiply it,

 \mathrm{ \longrightarrow{ \:  \dfrac{2x}{ {x}^{2}  + 1}  = sinA}}

We got the value of sinA.

-------------

We know that,

 \mathrm{ \longrightarrow{ \: {sin}^{2} A +  {cos}^{2} A = 1 }}

 \mathrm{ \longrightarrow{ \:  {cos}^{2}A = 1 -  {sin}^{2} A }}

 \mathrm{ \longrightarrow{ \:  {cos}^{2}A = 1 -  {\huge{(}} \dfrac{2x}{ {x}^{2} - 1 }  { \huge{)}} ^{2}  }}

 \mathrm{ \longrightarrow{ \:  {cos}^{2} A = 1 -  \dfrac{4 {x}^{2} }{( {x}^{2} + 1) ^{2}  } }}

By taking L.C.M ,

\mathrm{ \longrightarrow{ \:  {cos}^{2} A  =  \dfrac{( {x}^{2} + 1) ^{2}  - 4 {x}^{2}  }{ {( {x}^{2}  + 1)}^{2} } }}

We know that,

(a + b)² = a² + b² + 2ab

\mathrm{ \longrightarrow{ \:  {cos}^{2} A \:  =  \dfrac{ ({x}^{4}  + 1 + 2 {x}^{2} )- 4 {x}^{2}  }{ {( {x}^{2} } + 1)^{2}  } }}

\mathrm{ \longrightarrow{ \:  {cos}^{2} A \:  =  \dfrac{ {x}^{4}  - 2 {x}^{2} + 1 }{ {( {x}^{2}  + 1)}^{2} } }}

By,

(a - b)² = a² + b² - 2ab

\mathrm{ \longrightarrow{ \:  {cos}^{2} A = \dfrac{ {( {x}^{2}  - 1)}^{2} }{ {( {x}^{2}  + 1)}^{2} }  }}

\mathrm{ \longrightarrow{ \:  {cos} A = \sqrt{ \dfrac{ {( {x}^{2}  - 1)}^{2} }{ {( {x}^{2} + 1) }^{ 2} } }  }}

Root gets cancel with the squares,

 \red{\mathrm{ \longrightarrow{ \:  {cos}A =  \dfrac{ {x}^{2} - 1 }{ {x}^{2} + 1 } }}}

___________proved____

-------------------------------

Similar questions