if cosecA+cotA=2+√5 then prove that cosA=2/√5
Answers
Answered by
3
Step-by-step explanation:
here is your answer okkkkkkkkkkkkkk
Attachments:
Answered by
4
Answer:
proved [your answer is below]
Step-by-step explanation:
given that :cosecA+cotA=2+√5 -------(i)
(cosecA)^2-(cotA)^2=1 [Formulla]
⇨(cosecA+cotA)(cosecA-cotA)=1
⇨cosecA-cotA=1/(cosecA+cotA)
⇨cosecA-cotA=1/2+√5
⇨cosecA-cotA=(2-√5)/(2+√5)(2-√5)
⇨cosecA-cotA=√5-2 ---------(ii)
(i)-(ii)=2cotA=4
⇨cosA/sinA=2 -------(iii)
(i)+(ii)=2cosecA=2√5
⇨sinA=1/√5
By taking the value of sinA to equation (iii):
cosA/1/√5=2
⇨cosA=2/√5 (proved)
Similar questions