if cosecA + cotA = m then prove that m^2-1/m^2+1= cosA
Answers
Answered by
1
Answer:
Given: cosec A + cot A = m
⇒ (cosec A + cot A)2 = (m)2 [squaring both sides ]
⇒ cosec2A + cot2A + 2 cosec A cot A = m2 .......(1)
Now, LHS
=m2−1m2+1
= cosec2A+cot2A+2 cosecAcotA−1 cosec2A+cot2A+2 cosceA⋅cotA+1. [ From (1) ]
=cot2A+cot2A+2 cosecA⋅cotA cosec2A+ cosec2A+2 cosecA⋅cotA [Since, Cosec2A - Cot2A = 1]
=2cot2A+2 cosecAcotA2 cosec2A+2 cosecAcotA
=2cotA(cotA+ cosecA)2 cosecA( cosecA+cotA)
=cotAcosecA
=cosAsinA1sinA
=cosAsinA×sinA1
= cos A = RHS
Hence, Proved.
HOPE IT HELPS YOU
PLZ MARK AS BRAINLIEST.
Answered by
2
Answer:
Step-by-step explanation:
Attachments:
Similar questions