If cosecA+cotA=q.show that cosecA-cotA=1/q and hence find the values of sinA and secA.
Answers
Answered by
16
q = cosecA + cotA________(1)
1/q = 1/(cosecA + cotA)
Rationalising it,
1/q =1×(cosecA -cotA)/(cosecA + cotA)(cosecA - cotA)
∵1+ cot²A = cosec²A
⇒cosec²A - cot²A = 1
1/q =1×(cosecA -cotA)/(cosecA + cotA)(cosecA - cotA)
= (cosecA -cotA)/(cosec²A -cot²A)
= (cosecA -cotA) ______(2)
= proved
Now, adding equation (1) and (2),
2cosecA = q+ 1/q = (q²+1)/q
⇒cosecA = (q²+1)/2q
∴sinA = 2q/(q²+1)
cosA = (q²-1)/(q²+1)
⇒sec A = (q²+1)/(q²-1)
1/q = 1/(cosecA + cotA)
Rationalising it,
1/q =1×(cosecA -cotA)/(cosecA + cotA)(cosecA - cotA)
∵1+ cot²A = cosec²A
⇒cosec²A - cot²A = 1
1/q =1×(cosecA -cotA)/(cosecA + cotA)(cosecA - cotA)
= (cosecA -cotA)/(cosec²A -cot²A)
= (cosecA -cotA) ______(2)
= proved
Now, adding equation (1) and (2),
2cosecA = q+ 1/q = (q²+1)/q
⇒cosecA = (q²+1)/2q
∴sinA = 2q/(q²+1)
cosA = (q²-1)/(q²+1)
⇒sec A = (q²+1)/(q²-1)
kvnmurty:
very good
Similar questions