Math, asked by schamb0sander, 1 year ago

If cosecA+cotA=q.show that cosecA-cotA=1/q and hence find the values of sinA and secA.

Answers

Answered by qais
16
q = cosecA + cotA________(1)

1/q = 1/(cosecA + cotA)

Rationalising it,

1/q =1×(cosecA -cotA)/(cosecA + cotA)(cosecA - cotA)

∵1+ cot²A = cosec²A
⇒cosec²A - cot²A = 1

1/q =1×(cosecA -cotA)/(cosecA + cotA)(cosecA - cotA)
     = (cosecA -cotA)/(cosec²A -cot²A)
     = (cosecA -cotA) ______(2)
     = proved

Now, adding equation (1) and (2),

2cosecA = q+ 1/q = (q²+1)/q
⇒cosecA = (q²+1)/2q
∴sinA = 2q/(q²+1)

cosA = (q²-1)/(q²+1)
⇒sec A = (q²+1)/(q²-1)



kvnmurty: very good
Similar questions