if cosecA+secA=cosecB+secB then prove that tan(A+B)/2=cotAcotB
Answers
Answered by
4
Answer:
Step-by-step explanation:
A+B+C =180
A+B = 180 -C
DIVIDE BY 2 ON BOTH SIDES
THEN
(A+B)/2 =(90 - C/2)
NOW APPLY TAN ON BOTH SIDES
THEN
TAN((A+B)/2) =TAN (90 - C/2)
SINCE TAN(90 - TITA) = COT(TITA)
THERE FORE
TAN((A+B)/2)) = COT (C/2)
Answered by
0
Step-by-step explanation:
- Separating like terms we get Cosec A – cosec B = sec B – sec A
- Substituting cosecA and sec A in terms of sin and cos we get 1/sin A – 1/sin B = 1/cos B – 1/ cos A
- Sin B – Sin A / sin A sin B = cos A – cos B / cos B cos A
- Cos A cos B / sin A sin B = cos A – cos B / sin B – sin A
- Cot A cot B = cos A – cos B / sin B – sin A
- Now cos A – cos B = 2sin A + B/2 sin A – B / 2
- Sin A – sin B = 2 cos A + B/2 sin A – B/2
- Substituting we get
- Cot A cot B = 2sin A + B/2 sin B – A / 2 / 2 cos A + B/2 sin B – A/2
- Cot A cot B = sin A + B/2 / cos A + B/2
- Cot A cot B = tan A + B/2
- Hence proved
Reference link will be
https://brainly.in/question/4536027?
Similar questions