if cosecA- sinA=a^3 and secA-cosA=b^3 the find a^2b^2 (a^2+b^2)
Answers
Question
if cosec A- sin A=a³ and sec A-cos A=b³ the find a²b² (a²+b²)
Solution
Given :-
- cosec A- sin A=a³ --------(1)
- sec A - cos A = b³ ---------(2)
Find :-
- a²b²(a² + b²) = ?
Explanation
Important Formula
★ Sin² x + Cos² x = 1
★ Sin x = 1/(Cosec x)
★ Sec x = 1/(Cos x)
_________________________
So, by equ(1)
➠ 1/sin A - sin A = a³
➠ (1 - sin² A)/sin A = a³
Then,
➠ cos² A / sin A = a³
So, Value of a will be
➠ a² = [ cos² A / sin A]^(2/3) --------(3)
Now, by equ(2)
➠1/cos A - cos A = b³
➠ ( 1- cos² A)/cos A = b³
➠ sin² A / cos A = b³
So, Value of b will be
➠ b² = [ sin² A / cos A] ^(2/3) --------(4)
Now, Calculate Value of a²b²
➠ a²b²
keep Value of a² & b²
➠a²b² = [ cos² A / sin A]^(2/3) * [ sin² A / cos A] ^(2/3)
➠a²b² = (cos A )^(2 /3) * (sin A )^(2/3)
Now, Calculate Value of (a²+b²)
➠ a²+b²
Keep Value of a² & b²
➠ (a²+b²) = [ cos² A / sin A]^(2/3) + [ sin² A / cos A] ^(2/3)
➠ (a²+b²) = [(cos³ A + sin³ A)/(sin A. cos A) ]^(2/3)
Now,
➠ a²b² (a²+b²) = (cos A )^(2 /3) * (sin A )^(2/3) * [(cos³ A + sin³ A)/(sin A. cos A) ]^(2/3)
➠ a²b² (a²+b²) = [(cos³ A + sin³ A)]^(2/3)
➠ a²b² (a²+b²) = (cos A )^(3 × 2/3) + (sin A)^(3 × 2/3)
➠ a²b² (a²+b²) = cos² A + sin² A
[ ★ ( cos² A + sin² A) = 1 ]
➠ a²b² (a²+b²) = 1
___________________________
Hence
- Value of a²b² (a²+b²) = 1