if cosecA-sinA=a^3, secA-cosA=b^3, then prove that a^2b^2(a^2+b^2)=1
Answers
Answered by
7
a^3=cosecA-sinA =>a^2=cosecA-sinA/a
b^3=secA-cosA =>b^2=secA-cosA/b
Now,
a^2=(1/sinA-sinA)/a
=(1-sin^2 A/sinA)/a
=(cos^2 A/sinA)/a
=cotA*cosA/a
b^2=secA-cosA/b
=(1/cosA-cosA)/b
=(1-cos^2 A/cosA)/b
=(sin^2 A/cosA)/b
=tanA*sinA/b
We have to find the value of
a^2xb^2(a^2+b^2)
So lets solve it
=>cotA*cosA/a . tanA*sinA/b{(cotA*cosA/a)+(tanA*sinA/b)}
=>cosA*sinA/ab . {cos^2 A/sinAa +sin^2 A/cosAb }
=>cosA*sinA/ab . {cos^2 A+sin^2 A/sinA.cosA.ab}
=>cosA*sinA/ab . {1/sinAcosAab} [sin^2 A + cos^2 A = 1]
=>1/(ab)2
Similar questions
Science,
8 months ago
Physics,
8 months ago
Environmental Sciences,
8 months ago
Biology,
1 year ago
Biology,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago