If cosecA - sinA = l and secA - cosA = m prove that l^2 m^2 (l^2 + m^2 +3^3) = 1
Answers
Answered by
2
cosecA-sinA=cos^2A/sinA = l
secA - cosA=sin^2A/cosA = m
l*l*m*m(l*l+m*m+3)
l^2*m^2(l^2+m^2+3)
sub the values of l and m we get
=cos^2A * sin^2A ( cos^6A+sin^6A+3 * sin^2Acos^2A ) / (sin^2A * cos^2A)
= cos^6A+sin^6A+3 * sin^2Acos^2A
=(cos^2A+sin^2A)^3
=1^3 we know cos^2A+sin^2A=1
=1
is the above ans and we need to prove that(this isnot obvious)
= cos^6A+sin^6A+3 * sin^2Acos^2A
=(cos^2A+sin^2A)^3
we know (cos^2 A + sin ^2 A)^3
= cos^6A + sin ^6 A + 3 cos^2 A sin ^2 A ( cos^2 A + sin ^2 A)
using (a+b)^3 = a^3 + b^3 + 3ab(a^2+b^2)
= cos^6A+sin^6A+3 * sin^2Acos^2A as ( cos^2 A + sin ^2 A) = 1
secA - cosA=sin^2A/cosA = m
l*l*m*m(l*l+m*m+3)
l^2*m^2(l^2+m^2+3)
sub the values of l and m we get
=cos^2A * sin^2A ( cos^6A+sin^6A+3 * sin^2Acos^2A ) / (sin^2A * cos^2A)
= cos^6A+sin^6A+3 * sin^2Acos^2A
=(cos^2A+sin^2A)^3
=1^3 we know cos^2A+sin^2A=1
=1
is the above ans and we need to prove that(this isnot obvious)
= cos^6A+sin^6A+3 * sin^2Acos^2A
=(cos^2A+sin^2A)^3
we know (cos^2 A + sin ^2 A)^3
= cos^6A + sin ^6 A + 3 cos^2 A sin ^2 A ( cos^2 A + sin ^2 A)
using (a+b)^3 = a^3 + b^3 + 3ab(a^2+b^2)
= cos^6A+sin^6A+3 * sin^2Acos^2A as ( cos^2 A + sin ^2 A) = 1
vaibhav741852:
pls mark as brainliest answer
Similar questions