If cosecA-sinA=l and secA-cosA=m.prove that l²m²(l²+m²+3)=1.
Answers
Answered by
7
Hey Mate....
2 answers · Mathematics
Best Answer
cosecA-sinA=cos^2A/sinA = l
secA - cosA=sin^2A/cosA = m
l*l*m*m(l*l+m*m+3)
l^2*m^2(l^2+m^2+3)
sub the values of l and m we get
=cos^2A * sin^2A ( cos^6A+sin^6A+3 * sin^2Acos^2A ) / (sin^2A * cos^2A)
= cos^6A+sin^6A+3 * sin^2Acos^2A
=(cos^2A+sin^2A)^3
=1^3 we know cos^2A+sin^2A=1
=1
is the above ans and we need to prove that(this isnot obvious)
= cos^6A+sin^6A+3 * sin^2Acos^2A
=(cos^2A+sin^2A)^3
we know (cos^2 A + sin ^2 A)^3
= cos^6A + sin ^6 A + 3 cos^2 A sin ^2 A ( cos^2 A + sin ^2 A)
using (a+b)^3 = a^3 + b^3 + 3ab(a^2+b^2)
= cos^6A+sin^6A+3 * sin^2Acos^2A as ( cos^2 A + sin ^2 A) = 1
Mark as brainlist
#Nisha
2 answers · Mathematics
Best Answer
cosecA-sinA=cos^2A/sinA = l
secA - cosA=sin^2A/cosA = m
l*l*m*m(l*l+m*m+3)
l^2*m^2(l^2+m^2+3)
sub the values of l and m we get
=cos^2A * sin^2A ( cos^6A+sin^6A+3 * sin^2Acos^2A ) / (sin^2A * cos^2A)
= cos^6A+sin^6A+3 * sin^2Acos^2A
=(cos^2A+sin^2A)^3
=1^3 we know cos^2A+sin^2A=1
=1
is the above ans and we need to prove that(this isnot obvious)
= cos^6A+sin^6A+3 * sin^2Acos^2A
=(cos^2A+sin^2A)^3
we know (cos^2 A + sin ^2 A)^3
= cos^6A + sin ^6 A + 3 cos^2 A sin ^2 A ( cos^2 A + sin ^2 A)
using (a+b)^3 = a^3 + b^3 + 3ab(a^2+b^2)
= cos^6A+sin^6A+3 * sin^2Acos^2A as ( cos^2 A + sin ^2 A) = 1
Mark as brainlist
#Nisha
rudra4243:
thanks nisha!!!
Similar questions