Math, asked by challasudhakar449, 1 month ago

If cosecant A + cot A = 2/3 then find cosA​

Answers

Answered by PopularStar
86

Given:-

If cosecant A + cot A = 2/3

To find:-

CosA

Solution:-

CosecA= \dfrac{1}{Sin \ A}

CotA= \dfrac{Cos \ A}{Sin \ A}

[Converting the equation in terms of Cos A]

= \dfrac{1}{Sin \ A} + \dfrac{Cos \ A}{Sin \ A}= \dfrac{2}{3}

∴3+Cos A=2 Sin A

[Squaring both sides we will get,]

9+9 Cos² A+ 18 Cos A=4 sin² A

9+9 Cos² A+18 Cos A=4-4 Cos² A

13 Cos² A+18 Cos A+5=0

[Solving quadratic equation by factoring]

13 Cos² A+13 Cos A+5 Cos A+5=0

13 Cos A (Cos A+1)+5(Cos A+1)=0

(13 Cos A+5)(Cos A+1)=0

Cos A= \dfrac{-5}{13},-1

Similar questions