If coseco + coto = p. then the value of
Attachments:
Answers
Answered by
0
cosecθ+cotθ=p then cosθ=3
∴cosec2θ−cot2θ=1
(cosecθ−cotθ)(cosecθ+cotθ)=1
(cosecθ−cotθ)⋅P=1
cosecθ−cotθ=P1(i)
Given cosecθ+cotθ=P(ii)
Equation (i) + Equation (ii)
⇒cosecθ−cotθ=P1
cosecθ+cotθ=P
_______________________________________
⇒2cosecθ=P1+P
_______________________________________
⇒cosecθ=2P1+P2
⇒sinθ1=2P1+P2
Square in both sides
⇒sin2θ=(1+P2)2(2P)2 [∵sin2θ=1−cos2θ]
⇒1−cos2θ=1+P4+2P24P2
⇒1−1+P4+2P24P2=cos2θ
⇒1+P4+2P21+P4+2P2−4P2=cos2θ
⇒1+P4+2P21+P4−2P2=cos2θ
⇒(1+P2)2(1−P2)2
Similar questions