Math, asked by Era4322, 2 months ago

If coseco= V2, find the value of
1+sin? 0 + cos² 0
1+sec? o-tan0​

Attachments:

Answers

Answered by MrImpeccable
20

ANSWER:

Given:

  • cosec θ = √2

To Find:

  • Value of:

\:\:\:\:\dfrac{1+\sin^2\theta+\cos^2\theta}{1+\sec^2\theta-\tan^2\theta}

Solution:

METHOD 1: Using Trigonometric values.

We are given that,

\implies\cosec\theta=\sqrt2

So,

\implies\theta=45^{\circ}

We need to find:

\implies\dfrac{1+\sin^2\theta+\cos^2\theta}{1+\sec^2\theta-\tan^2\theta}

So,

\implies\dfrac{1+\sin^2(45^{\circ})+\cos^2(45^{\circ})}{1+\sec^2(45^{\circ})-\tan^2(45^{\circ})}

\implies\dfrac{1+\left(\frac{1}{\sqrt2}\right)^2+\left(\frac{1}{\sqrt2}\right)^2}{1+(\sqrt2)^2-(1)^2}

\implies\dfrac{1+\frac{1}{2}+\frac{1}{2}}{1+2-1}

\implies\dfrac{1+1}{2}

\implies\dfrac{2}{2}

\implies\bf1

METHOD 2: Using Trigonometric Identities

We need to find:

\implies\dfrac{1+\sin^2\theta+\cos^2\theta}{1+\sec^2\theta-\tan^2\theta}

But, we know that,

\hookrightarrow \sin^2\phi+\cos^2\phi=1

And,

\hookrightarrow \sec^2\phi-\tan^2\phi=1

So,

\implies\dfrac{1+(\sin^2\theta+\cos^2\theta)}{1+(\sec^2\theta-\tan^2\theta)}

\implies\dfrac{1+1}{1+1}

\implies\dfrac{2}{2}

\implies\bf1

Therefore, by both methods the answer is 1.

Similar questions