if cosecø +cot∅ = p then prove that cos∅ = p^2-1/p^2+1
Attachments:
Answers
Answered by
1
cosec θ + cot θ= P (given)
we know,
cosec² θ - cot² θ = 1
(cosec θ + cot θ)( cosec θ - cot θ)= 1
(cosec θ - cot θ) × P = 1
( cosec θ - cot θ) = 1/P
Let's solve (i ) and (ii)
cosec θ = 1+ P²/2P
cot θ = P²-1/2P
cot θ / cosec θ= (P²-1/2P)×(2P/P2²+1)
cos θ = P²-1/P²+1
we know,
cosec² θ - cot² θ = 1
(cosec θ + cot θ)( cosec θ - cot θ)= 1
(cosec θ - cot θ) × P = 1
( cosec θ - cot θ) = 1/P
Let's solve (i ) and (ii)
cosec θ = 1+ P²/2P
cot θ = P²-1/2P
cot θ / cosec θ= (P²-1/2P)×(2P/P2²+1)
cos θ = P²-1/P²+1
Similar questions