Math, asked by martijngarrix69, 9 months ago

if cosecø+cotø= a, prove that, (a²-1)/(a²+1)​

Answers

Answered by DibyenduChakraborty
0

Step-by-step explanation:

(cosec ø + cot ø) = a ..................................(i)

or, a² = (cosec ø + cot ø)²

or, a² = cosec²ø+2.cosecø.cotø+cot²ø

or, a² = 1+cot²ø+2.cosecø.cotø+cot²ø

[as,cosec²ø=1+cot²ø]

or, a² = 1+2cot²ø+2.cosecø.cotø

or, a² = 1+2cotø(cot ø + cosec ø)

or, a² = 1+2cotø.a [ from (i)]

or, (a²+1)=2+2cotø.a=2(1+cotø.a)

and, (a²-1)=2cotø.a

now,

(a²-1)/(a²+1)

= 2cotø.a/2(1+cotø.a)

= cotø.a/(1+cotø.a)

= cotø(cosec ø + cot ø)/[1+cotø(cosec ø + cot ø)]

= [(cos²ø/sin²ø)+(1+cosø)/sin²ø]/[1+(cos²ø/sin²ø)+(1+cosø)/sin²ø]

= [1/sin²ø(cos²ø+1+cosø)]/[1/sin²ø (sin²ø+cos²ø+1+cosø)]

=(cos²ø+1+cosø)/(2+cosø) [as, (sin²ø+cos²ø)=1]

Similar questions