Math, asked by LegendaryPranav, 9 months ago

If cosectheta + cottheta = 4/3. Find cosectheta, cottheta, sintheta, tantheta.​

Answers

Answered by pulakmath007
1

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p></p><p>

 \displaystyle \: cosec \theta + cot \theta =  \frac{4}{3}  \: ..........(1)

We know that

 \displaystyle \:  {cosec}^{2}  \theta -  {cot}^{2}  \theta = 1

 \implies \: \displaystyle \: (cosec \theta + cot \theta )(cosec \theta  -  cot \theta ) = 1

 \implies \: \displaystyle \:  \frac{4}{3}  \times (cosec \theta  -  cot \theta ) = 1

 \implies \: \displaystyle \:  (cosec \theta  -  cot \theta ) =  \frac{3}{4}  \: .......(2)

Equation (1)+(2) gives

 \implies \: \displaystyle \:  2cosec \theta   =  \frac{4}{3}  +  \frac{3}{4}

 \implies \: \displaystyle \:  2cosec \theta   =  \frac{25}{12}

 \implies \: \displaystyle \:  cosec \theta   =  \frac{25}{24}

So

 \displaystyle \:  sin \:\theta  =  \frac{1}{cosec \:\theta}  =  \frac{24}{25}

From(1)

\implies \: \displaystyle \:  cot \theta   =   \frac{4}{3}  - \frac{25}{24}   =  \frac{7}{24}

\implies \: \displaystyle \:  tan \theta   =   \frac{1}{cot\theta  }  = \frac{24}{7}

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Similar questions