Math, asked by veerabadri100, 1 year ago

if cosectheta+cottheta=k then prove that costheta=ksquare-1/ksquare+1​

Answers

Answered by manavjaison
1

Heya friend !

Given :-

cosec a + cot a = k --------------------------- (1)

Now,

We know, By identity,

cosec^{2}a - cot^{2}a = 1

or,

( cosec a - cot a ) ( cosec a + cot a)  = 1

( cosec a - cot a ) × k = 1

cosec a - cot a = \frac{1}{k}  ------------------------------ (2)

by (1) + (2), we get.

2 cosec a = k + \frac{1}{k}

2 cosec a = \frac{k^{2} + 1 }{k}

cosec a = \frac{k^{2+1} }{2k} -------------------------------------(3)

Now, from equation (2),

cot a = cosec a  - \frac{1}{k}

        = \frac{k^{2} +1}{2k} - \frac{1}{k}\\\\\frac{k^{2}+1-2 }{2k}\\\\\frac{k^{2}-1 }{2k} ------------------------------------ (4)

Now, by (3) ÷ (4) , we get,

\frac{cosec  a}{cot a} = \frac{\frac{k^{2} + 1 }{2k} }{\frac{k^{2}-1 }{2k} }

\frac{\frac{1}{sina} }{\frac{cos a}{sina } } = \frac{k^{2} +1}{k^{2}-1 }

\frac{1}{cosa}=\frac{k^{2}+1 }{k^{2}-1 }

So,

cos a = \frac{k^{2} -1}{k^{2}+1 }

Hence Proved !

Thanks !

#BAL #answerwithquality

Similar questions