Math, asked by swapna123, 11 months ago

if cosectheta-sintheta=a,sectheta-costheta=b,Prove thata^2b^2(a^2+b^2+3)=1​

Answers

Answered by anantmohanjha1991
1

Answer:

Please mark me as brainliest

Attachments:
Answered by lublana
0

Answer with Step-by-step explanation:

cosec\theta-sin\theta=a

\frac{1}{sin\theta}-sin\theta=a

\frac{1-sin^2\theta}{sin\theta}=a

\frac{cos^2\theta}{sin\theta}=a

Using the formula

cos^2\theta=1-sin^2\theta

sec\theta-cos\theta=b\\\frac{1}{cos\theta}-cos\theta=b\\sec\theta=\frac{1}{cos\theta}\\\frac{1-cos^2\theta}{cos\theta}=b\\\frac{sin^2\theta}{cos\theta}=b

RHS

(sin^2\theta+cos^2\theta)^3=(cos^2\theta)^3+(sin^2\theta)^3+3sin^2\thetacos^2\theta(sin^2\theta+cos^2\theta)

By using identity

(a+b)^3=a^3+b^3+3ab(a+b)

1=(cos^2\theta)^3+(sin^2\theta)^3+3 sin^2\theta cos^2\theta

Using the formula

sin^2\theta+cos^2\theta=1

LHS

a^2b^2(a^2+b^2+3)

Substitute the  values

\frac{(cos^2\theta)^2}{sin^2\theta}\times\frac{(sin^2\theta)^2}{cos^2\theta}(\frac{(cos^2\theta)^2}{sin^2\theta}+\frac{(sin^2\theta)^2}{cos^2\theta}+3)

sin^2\theta cos^2\theta(\frac{(cos^2\theta)^2}{sin^2\theta}+\frac{(sin^2\theta)^2}{cos^2\theta}+3)

(cos^2\theta)^3+(sin^2\theta)^3+3sin^2\theta cos^2\theta

LHS=RHS

Hence, proved

#Learn more:

https://brainly.in/question/7646441

Similar questions