if cosecthete + costheta=k then prove that cos theta = ksquare -1/ksquare+1
dheerajnaidu808:
it is cot theta not cos
Answers
Answered by
5
cot tita + cosec tita = K ------ 1
(cosec tita+ cot tita ) (cosec tita - cos tita) = 1 ( (a+b)(a-b) = a^2 + b^2 ) (cosec^2 - cot^2 = 1)
cosec tita - cos tita = 1 / k
cosec T + cot T = k
cosec T - cot T = 1/k
==> cot T = K^2 - 1 / k -- 2
===> do the same but this time do coesec T = K^2 +1 /k
==> you know cot T = cos T / sin T and cosec T = 1/ sin T
==> cos T / 1 / k / K^2 + 1 = K^2 - 1 / k form 2
==> cos T = K^2 - 1 / k / K^2 +1 / k (k k get cancels ) hence proved
==>
(cosec tita+ cot tita ) (cosec tita - cos tita) = 1 ( (a+b)(a-b) = a^2 + b^2 ) (cosec^2 - cot^2 = 1)
cosec tita - cos tita = 1 / k
cosec T + cot T = k
cosec T - cot T = 1/k
==> cot T = K^2 - 1 / k -- 2
===> do the same but this time do coesec T = K^2 +1 /k
==> you know cot T = cos T / sin T and cosec T = 1/ sin T
==> cos T / 1 / k / K^2 + 1 = K^2 - 1 / k form 2
==> cos T = K^2 - 1 / k / K^2 +1 / k (k k get cancels ) hence proved
==>
Similar questions
Science,
7 months ago
English,
7 months ago
Science,
7 months ago
Psychology,
1 year ago
English,
1 year ago