Math, asked by AFChisti, 3 months ago

If cosecx-cotx=1/x,then prove that secx=(x^2+1)/(x^2-1)

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &\sf{cosecx - cotx = \dfrac{1}{x} }\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: prove - \begin{cases} &\sf{secx = \dfrac{ {x}^{2} + 1 }{ {x}^{2}  - 1} }\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{{\bf{ {cosec}^{2} -  {cot}^{2}x = 1}}}

\boxed{{\bf{cosecx = \dfrac{1}{sinx} }}}

\boxed{{\bf{secx = \dfrac{1}{cosx} }}}

\boxed{{\bf{cotx = \dfrac{cosx}{sinx} }}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:cosecx \:  -  \: cotx = \dfrac{1}{x}  -  -  - (1)

We know that

\rm :\longmapsto\: {cosec}^{2} x -  {cot}^{2} x = 1

\rm :\longmapsto\:(cosecx + cotx)(cosecx - cotx) = 1

\rm :\longmapsto\:(cosecx + cotx) \times \dfrac{1}{x}  = 1

\rm :\longmapsto\:cosecx + cotx = x -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2cosecx = x + \dfrac{1}{x}

\rm :\longmapsto\:2cosecx = \dfrac{ {x}^{2}  + 1}{x}

\rm :\longmapsto\:cosecx = \dfrac{ {x}^{2}  + 1}{2x}  -  -  - (3)

Now,

On Subtracting equation (1) from equation (2), we get

\rm :\longmapsto\:2cotx = x - \dfrac{1}{x}

\rm :\longmapsto\:2cotx = \dfrac{ {x}^{2} - 1}{x}

\rm :\longmapsto\:cotx = \dfrac{ {x}^{2} - 1}{2x} -  -  - (4)

Now, divide equation (3) by equation (4), we get

\rm :\longmapsto \: \dfrac{cosecx}{cotx}  = \dfrac{\dfrac{ {x}^{2} + 1 }{ \cancel{2x}} }{ \:  \:  \:  \:  \: \dfrac{ {x}^{2}  - 1}{ \cancel{2x}}  \:  \:  \:  \:  \: }

\rm :\longmapsto\:\dfrac{1}{sinx}  \times \dfrac{sinx}{cosx}  = \dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}

\rm :\longmapsto\:\dfrac{1}{cosx}  = \dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}

\rm :\longmapsto\:secx = \dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions