if cosecx-sinx=a^3;secx-cosx=b^3 then a^2b^2(a^2+b^2)
Answers
Answered by
29
its equal to 1
1/sinx - sinx=a^3
(1-sin^2x)/sinx= a^3
cos^2x/sinx=a^3
cos^4/3 x/sin^2/3 x = a^2. 1
similarly secx - cosx=a^3 is equal to
sin^4/3 x/cos^2/3 x=b^2. 2
multiply 1 & 2
a^2*b^2 =sin^2/3 x * cos^2/3 x 3
a^2 + b^2=cos^4/3 x/sin^2/3 x + sin^4/3 x/cos^2/3 x = 1/(sin^2/3 x* cos^2/3 x) 4
multiply 3 & 4
a^2b^2(a^2+b^2) =1
1/sinx - sinx=a^3
(1-sin^2x)/sinx= a^3
cos^2x/sinx=a^3
cos^4/3 x/sin^2/3 x = a^2. 1
similarly secx - cosx=a^3 is equal to
sin^4/3 x/cos^2/3 x=b^2. 2
multiply 1 & 2
a^2*b^2 =sin^2/3 x * cos^2/3 x 3
a^2 + b^2=cos^4/3 x/sin^2/3 x + sin^4/3 x/cos^2/3 x = 1/(sin^2/3 x* cos^2/3 x) 4
multiply 3 & 4
a^2b^2(a^2+b^2) =1
juhi78621:
thank u soo much
Similar questions