Math, asked by ronakbandal727, 3 months ago

If cosee o=s
o =s then find the value
3
ol los ottan o

Attachments:

Answers

Answered by diwanamrmznu
17

Given:-

 \implies \:  \cosec \theta =  \frac{5}{3}  \\

Find:-

 \implies \:  \cos\theta +  \tan \theta =  {?}^{}  \\

SOLUTION:-

we know that

 \implies \red{\cosec \theta  =  \frac{h}{p}  }\\

 \implies \:  \cosec \theta  =  \frac{5}{3}  \\

h=5 and p=3

we know that Pythagoras theorem

 \implies \pink{h =  \sqrt{p {}^{2}  + b {}^{2} } } \\  \\  \implies \pink{b =  \sqrt{h {}^{2}  - p {}^{2} } } \\

put value

 \implies \: b =  \sqrt{5 {}^{2}  - 3 {}^{2} }  \\  \\  \implies \: b =  \sqrt{25 - 9}  \\  \\  \implies \: b =  \sqrt{16}  \\  \\  \implies \: b = 4

we know that

 \implies \:  \cos \theta =  \frac{b}{h} =  \frac{4}{5}   \\

and

 \implies \:  \tan \theta  =  \frac{p}{b} =  \frac{3}{4}   \\

 \implies \: \cos \theta  +   \tan \theta  \\  \\  \implies \:  \frac{4}{5}  +  \frac{3}{4}  \\  \\  \implies \:  \frac{16 + 15}{20}  \\  \\  \implies \:  \frac{31}{20}  \\

_____________________________________

I hope it helps you

Similar questions