Math, asked by lcvelyshinee, 12 days ago

if cosO = 2x/1+x² find the value of sinO and cotO
*please don't spam*

:)​

Answers

Answered by haldersujan09
1

Step-by-step explanation:

cosO=2x/1+x^2=base/hypotenuse

Therefore,( altitudes) ^2+(base)^2=(hypotenuse)^2

( Altitude) ^2=(hypo)^2-(base)^2

=(1+x^2)^2-(2x)^2

=1+2x^2+x^4-4x^2

=1-2x^2+x^4

=(1-x^2)^2

Altitude=1-x^2

sinO=alt/hypo=(1-x^2)/(1+x^2)

cotO=base/alt=2x/1-x^2

Answered by SparklingBoy
11

 \large \dag Question :-

  \rm If \: cos\theta  =  \dfrac{2x}{1 +  {x}^{2} }   \: then \: find : -

\rm sin \theta \: and \: cot \theta

 \large \dag Answer :-

  • \purple{ {{{\bf sin \theta =  \dfrac{1 -  {x}^{2} }{1+x^2}} }}}

  •  \purple{ {{{\bf cot \theta =  \dfrac{1 -  {x}^{2} }{2x}} }}}

 \large \dag Step by step Explanation :-

We have,

 \rm cos \theta =  \frac{2x}{1 +  {x}^{2}} \\  \\

:\longmapsto \rm cos {}^{2}  \theta =  \bigg( \frac{2x}{ {1 + x}^{2} }  \bigg)^{2}  \\  \\

:\longmapsto \rm  cos {}^{2}  \theta = \frac{ {4x}^{2} }{1 +  {x}^{4} +  {2x}^{2}  }  \\  \\

Also we know that,

 \\  \green{ \underline \red{\rm{sin}^{2} \theta = 1 -  {cos}^{2}  \theta}} \\  \\

:\longmapsto \rm  {sin}^{2}  \theta = 1 -  \frac{ {4x}^{2} }{1 +  {x}^{4}  +  {2x}^{2} }  \\  \\

:\longmapsto \rm  {sin}^{2}  \theta =  \frac{1 +  {x}^{4}  +  {2x}^{2}  -  {4x}^{2} }{1 +  {x}^{4}  +  {2x}^{2} } \\  \\

:\longmapsto \rm  {sin}^{2}  \theta =  \frac{1 +  {x}^{4}  -  {2x}^{2} }{1 +  {x}^{4}  +  {2x}^{2} }  \\  \\

:\longmapsto \rm  {sin}^{2}  \theta =  \frac{(1 -  {x {}^{2} )}^{2} }{ {(1 +  {x}^{2} )}^{2} }  \\  \\

:\longmapsto \rm  {sin}^{2}  \theta =  \bigg( \frac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg)^{2}  \\  \\

:\longmapsto \rm  {sin}\theta =  \sqrt{\bigg( \frac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg)^{2}  }  \\  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf {sin}\theta =  \frac{1 -  {x}^{2} }{1 +  {x}^{2} } } }}} \\  \\

Also we know that,

 \\  \rm cot \theta =  \frac{sin \theta}{cos \theta}  \\  \\

:\longmapsto \rm cot \theta =  \dfrac{ \dfrac{1 -  {x}^{2} }{ \cancel{1 +  {x}^{2}} } }{ \dfrac{2x}{ \cancel{1 +  {x}^{2}} } }  \\  \\

 \purple{ \large :\longmapsto  \underline {\boxed{{\bf cot \theta =  \frac{1 -  {x}^{2} }{2x}} }}}  \\  \\

Similar questions