If cosø =4/5, evaluate cosø.cotø/1-sec²ø in details
Answers
Answered by
0
answer is 64/45...........
9526976024av:
How did you get negative 9
Answered by
0
cosA = 4/ 5 => sinA =√ ( 1 - cos^2A)
= √( 1 - (4/5)^2 ) = 3/ 5
sinA = 3/ 5
cotA = cosA/ sinA = 4/ 5/3/ 5 = 4/ 3
cotA = 4/ 3 ,
secA = 1/ cosA = 1/4/5 = 5/ 4
thus :
cosA.cotA/ ( 1 - sec^2A)
= 4/ 5 × 4/3 / ( 1 - (5/4)^2 )
= 16/ 15 / ( -9/ 16)
=( 16/15) × ( 16/- 9)
= - 256/ 135
Answer: - 256/135
= √( 1 - (4/5)^2 ) = 3/ 5
sinA = 3/ 5
cotA = cosA/ sinA = 4/ 5/3/ 5 = 4/ 3
cotA = 4/ 3 ,
secA = 1/ cosA = 1/4/5 = 5/ 4
thus :
cosA.cotA/ ( 1 - sec^2A)
= 4/ 5 × 4/3 / ( 1 - (5/4)^2 )
= 16/ 15 / ( -9/ 16)
=( 16/15) × ( 16/- 9)
= - 256/ 135
Answer: - 256/135
Similar questions