if cosø+sinø=√2 cosø show that cosø-sinø=√2 sinø
Answers
Answered by
21
hi mate here is ur answer
the answer is correct so u can completely rely on it
so here u go with the answer
given to us is
cos ∅ - sin ∅ = √2 sin∅
cos ∅ = √2 sin∅ +sin∅
cos ∅ = sin ∅( √2 - 1)
multiplying both sides by the rationalizing factor of √2+1
that it √2 - 1
we get ,
cos ∅ (√2-1 ) = sin ∅ ( √2 + 1) (√2 - 1)
√2cos∅ - cos ∅ = sin ∅ (2-1)
√2 cos ∅ - cos ∅ = sin ∅
√2 cos ∅ = sin ∅ + cos ∅
hence proved
hope it helps !!!
mark as brainliest
dnavneetk9549:
ur wlcm @kalpeshprabhakar
Answered by
34
Solution :
Here I am using angle A .
cosA + sinA = √2 cosA
Do the square both sides ,
( cosA + sinA )² = ( √2 cosA )²
=> cos²A+sin²A + 2cosAsinA = 2cos²A
=> sin²A+2cosAsinA=2cos²A -cos²A
=> sin²A = cos²A - 2cosAsinA
=>sin²A+sin²A =cos²A+sin²A-2cosAsinA
=> 2sin²A = ( cosA - sinA )²
=> √(2sin²A ) = √(cosA-sinA)²
=> √2 sinA = cosA - sinA
Therefore ,
cosA - sinA = √2 sinA
••••
Here I am using angle A .
cosA + sinA = √2 cosA
Do the square both sides ,
( cosA + sinA )² = ( √2 cosA )²
=> cos²A+sin²A + 2cosAsinA = 2cos²A
=> sin²A+2cosAsinA=2cos²A -cos²A
=> sin²A = cos²A - 2cosAsinA
=>sin²A+sin²A =cos²A+sin²A-2cosAsinA
=> 2sin²A = ( cosA - sinA )²
=> √(2sin²A ) = √(cosA-sinA)²
=> √2 sinA = cosA - sinA
Therefore ,
cosA - sinA = √2 sinA
••••
Similar questions