Math, asked by munmunkrraut800, 1 year ago

If cosQ+sinQ=√2,then cosQ-sinQ is equal to???

Answers

Answered by TPS
1

 \cos( \beta )  +  \sin( \beta )  =  \sqrt{2}  \\  \\  { \big( \cos( \beta )  +  \sin( \beta ) \big)}^{2}  =  {( \sqrt{2}) }^{2}  \\  \\  { \sin( \beta ) }^{2}  +  { \cos( \beta ) }^{2}  + 2 \sin( \beta )  \cos( \beta )  = 2 \\  \\ 1 + 2 \sin( \beta )  \cos( \beta )  = 2 \\  \\ 2 \sin( \beta )  \cos( \beta )  = 2 - 1 = 1

__________________

 \cos( \beta )  -  \sin( \beta )  \\  \\  =  \sqrt{ \big( { \cos( \beta )  -  \sin( \beta ) \big )}^{2} }  \\  \\  =  \sqrt{ { \cos( \beta ) }^{2}  +  { \sin( \beta ) }^{2}  - 2 \sin( \beta )  \cos( \beta ) }  \\  \\  =  \sqrt{1 -  2 \sin( \beta )  \cos( \beta ) }  \\  \\  =  \sqrt{1 - 1}  \\  \\  = 0

Answer : cosQ-sinQ = 0

Note: I have used beta in place of Q.

munmunkrraut800: No buddy it's wrong.
munmunkrraut800: CosQ-SinQ=√2SinQ
Answered by Anonymous
0

Answer:

→ cosQ-sinQ = 0

Step-by-step explanation:

Note: I am going to use beta in place of Q.

 \begin{lgathered}\cos( \beta ) + \sin( \beta ) = \sqrt{2} \\ \\ { \big( \cos( \beta ) + \sin( \beta ) \big)}^{2} = {( \sqrt{2}) }^{2} \\ \\ { \sin( \beta ) }^{2} + { \cos( \beta ) }^{2} + 2 \sin( \beta ) \cos( \beta ) = 2 \\ \\ 1 + 2 \sin( \beta ) \cos( \beta ) = 2 \\ \\ 2 \sin( \beta ) \cos( \beta ) = 2 - 1 = 1\end{lgathered}

\begin{lgathered}\cos( \beta ) - \sin( \beta ) \\ \\ = \sqrt{ \big( { \cos( \beta ) - \sin( \beta ) \big )}^{2} } \\ \\ = \sqrt{ { \cos( \beta ) }^{2} + { \sin( \beta ) }^{2} - 2 \sin( \beta ) \cos( \beta ) } \\ \\ = \sqrt{1 - 2 \sin( \beta ) \cos( \beta ) } \\ \\ = \sqrt{1 - 1} \\ \\ = 0\end{lgathered}

Similar questions