If (costheta - sin theta) = √2 sin theta then prove that cos theta + sintheta ) =√ 2 costheta.
[CBSE
Answers
Answered by
56
Answer:-
Given:-
cos θ - sin θ = √2 sin θ
Squaring both sides we get,
⟹ (cos θ - sin θ)² = (√2 sin θ)²
using (a - b)² = a² + b² - 2ab we get,
⟹ cos² θ + sin² θ - 2 sin θ cos θ = 2 sin² θ
⟹ cos² θ = 2 sin² θ - sin² θ + 2 sin θ cos θ
Now, Adding cos² θ both sides we get,
⟹ cos² θ + cos² θ = sin² θ + cos² θ + 2 sin θ cos θ
using a² + b² + 2ab = (a + b)² in RHS we get,
⟹ 2 cos² θ = (sin θ + cos θ)²
⟹ √(2 cos² θ) = √(sin θ + cos θ)²
Square and root get cancelled both sides.
⟹ √2 cos θ = sin θ + cos θ
Hence, Proved.
Answered by
43
Given :-
If (cos theta - sin theta) = √2 sin theta
To Find :-
Prove that
(cos theta + sin theta ) = √2 cos theta.
Solution :-
At first we need to square both the sides
Similar questions