If costheta+sintheta=root2 costheta. prove that costheta-sintheta=root2 sintheta
Answers
Answered by
13
cos∅ + sin∅ = √2cos∅ -------(1)
take square both sides ,
cos²∅ + sin²∅ +2sin∅.cos∅ = 2cos²∅
2cos²∅ - cos²∅ - sin²∅ = 2sin∅.cos∅
cos²∅ - sin²∅ = 2sin∅.cos∅
(cos∅ - sin∅ )(cos∅ + sin∅) = 2sin∅.cos∅
put equation (1)
( cos∅ - sin∅)√2cos∅ = 2sin∅.cos∅
(cos∅ - sin∅) = √2sin∅
hence, proved //
take square both sides ,
cos²∅ + sin²∅ +2sin∅.cos∅ = 2cos²∅
2cos²∅ - cos²∅ - sin²∅ = 2sin∅.cos∅
cos²∅ - sin²∅ = 2sin∅.cos∅
(cos∅ - sin∅ )(cos∅ + sin∅) = 2sin∅.cos∅
put equation (1)
( cos∅ - sin∅)√2cos∅ = 2sin∅.cos∅
(cos∅ - sin∅) = √2sin∅
hence, proved //
ajit2003:
i am not understanding from third line
Similar questions