If costheta - sintheta = root2sintheta, prove that costheta + sintheta=root2costheta
Answers
Answered by
2
Question :- if cosθ - sinθ = √2sinθ, prove that cosθ + sinθ = √2cosθ . ?
Solution :-
→ cosθ - sinθ = √2sinθ
→ cosθ = √2sinθ + sinθ
→ cosθ = sinθ(√2 + 1)
→ (sinθ / cosθ) = 1/(√2 + 1)
Rationalize RHS part now,
→ (sinθ / cosθ) = 1/(√2 + 1) * {(√2 - 1) / (√2 - 1)}
→ (sinθ / cosθ) = (√2 - 1)/{(√2 + 1)(√2 - 1)}
using (a + b)(a - b) = a² - b² in RHS denominator now,
→ (sinθ / cosθ) = (√2 - 1)/ (2 - 1)
→ (sinθ / cosθ) = (√2 - 1)
→ sinθ = cosθ(√2 - 1)
→ sinθ = √2cosθ - cosθ
→ sinθ + cosθ = √2cosθ . (Hence, Proved).
Learn More :-
tanA/(1-cotA) + cotA/(1-tanA)
https://brainly.in/question/16775946
Answered by
0
Answer:
your answer attached in the photo
Attachments:
Similar questions