Math, asked by rajputvansh502, 4 months ago

if cosx = -3/5, x lies in II quadrant . find the value sin x/2, cosx/2 and tan x /2

Answers

Answered by mathdude500
1

Question :-

  • if cosx = -3/5, x lies in II quadrant . find the value sin x/2, cosx/2 and tan x /2

Answer

Given :-

  • cosx = -3/5, x lies in II quadrant .

To find :-

  • The value sin x/2, cosx/2 and tan x /2

Identity used :-

\bf \:cosx = 1 - 2 {sin}^{2} \dfrac{x}{2}

\bf \:cosx = 2 {cos}^{2} \dfrac{x}{2}  - 1

Solution :-

As x lies in second quadrant.

\bf\implies \:\dfrac{\pi}{2}  < x < \pi

\bf\implies \:\dfrac{\pi}{4} <  \dfrac{x}{2}  < \dfrac{\pi}{2}

\bf\implies \:\dfrac{x}{2}  \: lies \: in \: first \: quadrant.

\bf\implies \:sin\dfrac{x}{2} , \: cos\dfrac{x}{2}, \: tan\dfrac{x}{2} > 0

(1) To find the value of sin(x/2), we know

\bf \:cosx = 1 - 2 {sin}^{2} \dfrac{x}{2}

Put the value of cosx, we get

\bf \: - \dfrac{3}{5}  = 1 - 2 {sin}^{2} \dfrac{x}{2}

\bf\implies \:2 {sin}^{2}  \dfrac{x}{2} = 1 + \dfrac{3}{5}

\bf\implies \:2 {sin}^{2} \dfrac{x}{2}  =  \dfrac{8 }{5}

\bf\implies \: {sin}^{2} \dfrac{x}{2}  = \dfrac{4}{5}

\bf\implies \:sin\dfrac{x}{2}  = \dfrac{2}{ \sqrt{5} }

(2) To find the value of cos(x/2), we know

\bf \:cosx = 2 {cos}^{2} \dfrac{x}{2}  - 1

Put the value of cosx, we get

\bf \: - \dfrac{3}{5}  = 2 {cos}^{2} \dfrac{x}{2}  - 1

\bf\implies \: {2cos}^{2} \dfrac{x}{2}  = 1 - \dfrac{3}{5}

\bf\implies \: {2cos}^{2}  \dfrac{x}{2} = \dfrac{2}{5}

\bf\implies \: {cos}^{2}  \dfrac{x}{2} = \dfrac{1}{5}

\bf\implies \:cos\dfrac{x}{2}  = \dfrac{1}{ \sqrt{5} }

(3) To find the value of tan(x/2)

\bf \:tan \dfrac{x}{2} = \dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}

\bf\implies \:tan\dfrac{x}{2} = \dfrac{\dfrac{2}{ \sqrt{5} }}{ \dfrac{1}{ \sqrt{5} }}

\bf\implies \:tan\dfrac{x}{2} = 2

___________________________________________

Similar questions