If cosx = 6/ 10 then find sinx
Answers
Answer:
sin x = 8/10 or 4/5
Step-by-step explanation:
cos x = adj side/ hypote
=6/10
by pythagorean theorem
6^2 + y^2 = 10^2
36 + y^2 = 100
y^2 = 100 - 36
y^2 = 64
y = opposite side = root 64 = 8
sin x = opp side/ hypote
sin x = 8/10 or 4/5
Answer- The above question is from the chapter 'Trigonometric Functions'.
Trigonometry- The branch of Mathematics which helps in dealing with measure of three sides of a right-angled triangle is called Trigonometry.
Trigonometric Ratios:
sin θ = Perpendicular/Hypotenuse
cos θ = Base/Hypotenuse
tan θ = Perpendicular/Base
cosec θ = Hypotenuse/Perpendicular
sec θ = Hypotenuse/Base
cot θ = Base/Perpendicular
Also, tan θ = sin θ/cos θ and cot θ = cos θ/sinθ
Trigonometric Identites:
1. sin²θ + cos²θ = 1
2. sec²θ - tan²θ = 1
3. cosec²θ - cot²θ = 1
Given question: If cos x = 6/10, then find sin x.
Solution: cos x = 6/10 = 3/5
cos x is positive.
So, x can lie either in Ist or IVth quadrant.
When x lies in Ist quadrant,
sin²x + cos²x = 1
sin²x + (3/5)² = 1
sin²x + 9/25 = 1
sin²x = 1 - 9/25 = (25 - 9)/25 = 16/25
sin x = ±√16/25
sin x = 4/5 (∵ in Ist quadrant, all T-Ratios are positive.)
When x lies in IVth quadrant,
sin²x + cos²x = 1
sin²x + (3/5)² = 1
sin²x + 9/25 = 1
sin²x = 1 - 9/25
sin²x = 16/25
sin x = ±√16/25
sin x = - 4/5 (∵ sin θ is negative in IVth quadrant.)