Math, asked by kollipara9602, 7 months ago

If cosx+cos squarex =1 ,then value of sin squarex+sin raised to 4is

Answers

Answered by Anonymous
32

Answer:

{ \huge{ \underline{ \bf{ \red{Given}}}}}

{ \sf{cos \: x +  {cos}^{2} x = 1}}

Find:-

{ \sf{ {sin}^{2}  x+ {sin}^{4} x =  </u></strong><strong><u>?</u></strong><strong><u>?</u></strong><strong><u>}}

Solution:-

{ \to{ \sf{cos \: x +  {cos}^{2}x = 1 }}}

{ \to{ \sf{cos \: x = 1 -  {cos}^{2}x }}}

From trigonometry identity....

 { \boxed{ \sf{ {sin}^{2}x +  {cos}^{2} x = 1 }}}

{ \boxed{ \sf{ {sin}^{2} x = 1 -  {cos}^{2}x }}}

{ \to{ \sf{cos \: x =  {sin}^{2}x }}}

Now, do squaring on both sides....

{ \to{ \sf{ {(cos)}^{2} x =  {( {sin}^{2}) }^{2} x}}}

{ \to{ \sf{ {cos}^{2} x =  {sin}^{4} x}}}

{ \to{ \sf{ {sin}^{4}x -  {cos}^{2}x = 0  }}}

{ \sf{ \to{now \: keep \: 1 \: at \: both \: sides}}}

{ \to{ \sf{ {sin}^{4} x + 1 -  {cos}^{2}x = 1 }}}

From trigonometry identity.....

{ \boxed{ \sf{ {sin}^{2}x  +  {cos}^{2}x = 1 }}}

{ \to{ \sf{ {sin}^{4} x +  {sin}^{2}x = 1 }}}

{ \therefore{ \sf{ {sin}^{2}x +  {sin}^{4}x = 1  }}}

Related trigonometry identities:-

sin²θ+cos²θ=1

sec²θ- tan²θ=1

csc²θ- cot²θ=1

Similar questions